Chaperone-assisted pilus assembly and bacterial attachment.
نویسندگان
چکیده
Bacterial pili assembled by the chaperone-usher pathway can mediate microbial attachment, an early step in the establishment of an infection, by binding specifically to sugars present in host tissues. Recent work has begun to reveal the structural basis both of chaperone function in the biogenesis of these pili and of bacterial attachment.
منابع مشابه
Fiber Formation across the Bacterial Outer Membrane by the Chaperone/Usher Pathway
Gram-negative pathogens commonly exhibit adhesive pili on their surfaces that mediate specific attachment to the host. A major class of pili is assembled via the chaperone/usher pathway. Here, the structural basis for pilus fiber assembly and secretion performed by the outer membrane assembly platform--the usher--is revealed by the crystal structure of the translocation domain of the P pilus us...
متن کاملAssembly of complex organelles: pilus biogenesis in gram-negative bacteria as a model system.
Pathogenic bacteria assemble a variety of adhesive structures on their surface for attachment to host cells. Some of these structures are quite complex. For example, the hair-like organelles known as pili or fimbriae are generally composed of several components and often exhibit composite morphologies. In gram-negative bacteria assembly of pili requires that the subunits cross the cytoplasmic m...
متن کاملDonor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted beta strand displacement mechanism.
Gram-negative pathogens commonly use the chaperone-usher pathway to assemble adhesive multisubunit fibers on their surface. In the periplasm, subunits are stabilized by a chaperone that donates a beta strand to complement the subunits' truncated immunoglobulin-like fold. Pilus assembly proceeds through a "donor-strand exchange" (DSE) mechanism whereby this complementary beta strand is replaced ...
متن کاملChaperone-subunit-usher interactions required for donor strand exchange during bacterial pilus assembly.
The assembly of type 1 pili on the surface of uropathogenic Escherichia coli proceeds via the chaperone-usher pathway. Chaperone-subunit complexes interact with one another via a process termed donor strand complementation whereby the G1beta strand of the chaperone completes the immunoglobulin (Ig) fold of the pilus subunit. Chaperone-subunit complexes are targeted to the usher, which forms a c...
متن کاملPapD chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of DsbA.
Adhesive P pili of uropathogenic Escherichia coli were not assembled by a strain that lacks the periplasmic disulfide isomerase DsbA. This defect was mostly attributed to the immunoglobulin-like pilus chaperone PapD, which possesses an unusual intrasheet disulfide bond between the last two beta-strands of its CD4-like carboxyl-terminal domain. The DsbA-dependent formation of this disulfide bond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current opinion in structural biology
دوره 10 5 شماره
صفحات -
تاریخ انتشار 2000